Two GABAergic Intraglomerular Circuits Differentially Regulate Tonic and
نویسنده
چکیده
Olfactory nerve axons terminate in olfactory bulb glomeruli forming excitatory synapses onto the dendrites of mitral/tufted (M/T) and juxtaglomerular cells, including external tufted (ET) and periglomerular (PG) cells. PG cells are heterogeneous in neurochemical expression and synaptic organization. We used a line of mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65kDa gene (GAD65+) promoter to characterize a neurochemically identified subpopulation of PG cells by whole cell recording and subsequent morphological reconstruction. GAD65+ GABAergic PG cells form two functionally distinct populations: 33% are driven by monosynaptic olfactory nerve (ON) input (ON-driven PG cells), the remaining 67% receive their strongest drive from an ON→ET→PG circuit with no or weak monosynaptic ON input (ET-driven PG cells). In response to ON stimulation ON-driven PG cells exhibit paired-pulse depression (PPD), which is partially reversed by GABA B receptor antagonists. The ON→ET→PG circuit exhibits phasic GABA B-R-independent PPD. ON input to both circuits is under tonic GABA B-R-dependent inhibition. We hypothesize that this tonic GABA B R-dependent presynaptic inhibition of olfactory nerve terminals is due to autonomous bursting of ET cells in the ON→ET→PG circuit, which drives tonic spontaneous GABA release from ET-driven PG cells. Both circuits likely produce tonic and phasic postsynaptic inhibition of other intraglomerular targets. Thus olfactory bulb glomeruli contain at least two functionally distinct GABAergic circuits that may play different roles in olfactory coding.
منابع مشابه
Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals.
Olfactory nerve axons terminate in olfactory bulb glomeruli forming excitatory synapses onto the dendrites of mitral/tufted (M/T) and juxtaglomerular cells, including external tufted (ET) and periglomerular (PG) cells. PG cells are heterogeneous in neurochemical expression and synaptic organization. We used a line of mice expressing green fluorescent protein under the control of the glutamic ac...
متن کاملThe impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type
The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and resul...
متن کاملTonic inhibition sets the state of excitability in olfactory bulb granule cells.
GABAergic granule cells (GCs) regulate, via mitral cells, the final output from the olfactory bulb to piriform cortex and are central for the speed and accuracy of odour discrimination. However, little is known about the local circuits in which GCs are embedded and how GCs respond during functional network activity. We recorded inhibitory and excitatory currents evoked during a single sniff-lik...
متن کاملCausal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells
The dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine-tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders...
متن کاملPhasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat.
Neurons of the nucleus locus coeruleus (LC) discharge with phasic bursts of activity superimposed on highly regular tonic discharge rates. Phasic bursts are elicited by bottom-up input mechanisms involving novel/salient sensory stimuli and top-down decision making processes; whereas tonic rates largely fluctuate according to arousal levels and behavioral states. Although it is generally believe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009